
-^^^^m^^^-\
toi puauc teieoael

Model Checking for Security Protocols

Will Marrero Edmund Clarke Somesh Jha

May 1997
CMU-CS-97-139

School of Computer Science
Carnegie Mellon University

Pittsburgh!1 Pi 15213

Abstract

As moro resources arc added to computer notworksr and as morn vaidors look to the World Wide Wob as
a viable marketplacer the importance of being able to restrict access and to insure some kind of acceptable
behavior even in the presence of malicious intruders becomes paramount. People have looked to cryptography
to help solve many of these problems. Howeverr cryptography itself is only a tool. The security of a system
depends not only on the cryptosystem being usedrbut also on how it is used. Typicallyü researhers have
proposed the use of security protocols to provide these security guarantees. These protocols consist of a
sequence of messagesr mary with encrypted parts. In this paperr TO develop a way of verifying these protocols
using model checking. Model checking has proven to be a very useful technique for verifying hardware designs.
By modelling circuits as finite-state machinesr and examining all possible execution traces!"1 modelhecking
has found a number of errors in real world designs. Like hardware designs!"1 securiy protocols are very subtler
and can also have bugs which are difficult to find. By examining all possible execution traces of a security
protocol in the presence of a malicious intruder with well defined capabilities!"1 TO can determine if a protocol
does indeed enforce its security guarantees. If notr TO can provide a sample trace of an attack on the protocol.

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597, and in part by the National Science Foundation under grant no. CCR-
8722633 .

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the National Science Foundation or the U.S.
Government.

19970715 190
xw m^mt nsrssECüED I

Keywords: computer securityr cryptographic protocolsrformal vcrificationr model checkingrpartial
order.

1 Introduction

Security for early computers was provided by their physical isolation. Unauthorized access to these machines
was prevented by restricting physical access. The importance of sharing computing resources led to systems
where users had to authenticate thcmselvesl"1 usually h/ providing a name/password pair. This was sufficient
if the user needed to be physically at the console or was connected to the machine across a secure link.
Howeverr the efficiency to be gained b/ sharing data and computing resources has led to computer nctworksr
in which the communication channels cannot always be trusted. In this caser authertication information such
as the name/password pairs could be intercepted and even replayed to gain unauthorized access. When such
networks were local to a certain user community and isolated from the rest of the worldr mar/ were willing
take this risk and to place their trust in the community. Howeverr in order to be able to share information
with those outside the communityT this isolation wmld have to be removed. The benefits to be had by such
sharing have been enormousr and the gains are demonstrated b/ the growth of such entities as the Internet
and the World Wide Web. Nowl"1 Try fewr if ary guarantees can be made about the communication links.
Numerous protocols that take advantage of cryptography have been proposed that claim to solve many of
the security issues. The correctness of these protocols is paramountrespecially when we consider the size
of the networks involved and the desire of users to place confidential information and to allow for monetary
transactions to take place across these networks.

Typicallyr these protocols can be though of as a set of principals which send messages to each other. The
hope is that by requiring agents to produce a sequence of messagesr the securiy goals of the protocol can be
achieved. For exampler if a principal^ receives a message encrypted with a key known only by principals A
and BY then principalA should be able to conclude that the message originated from principal B. Howeverr
it would be incorrect to conclude that principal A is talking to principal B. An adversary could be replaying
a message overheard during a pervious conversation between A and B. Sol1 depending on the securiy goal
of this simple example protocoir the protocol my or may not be secure. Because the reasoning behind the
correctness of these protocols can be subtler a lumber of researchers have turned to formal methods to prove
protocols correct.

In order to concentrate on the security of the protocol itself as opposed to the the security of the
cryptosystem usedPthe vast majority of research in this area has made the following "perfect encryption"
assumptions.

• The decryption key must be known in order to extract the plaintext from the cyphertext.

• There is enough redundancy in the cryptosystem that a cyphertext can only be generated using en-
cryption with the appropriate key. This also implies that there are no encryption collisions. If two
cyphcrtcxts are equair they mist have been generated from the same plaintext using the same key.

While the assumptions are obviously not truer they arer in practicer rcasonabltThcy are important because
they allow us to abstract away the cryptosystem and analyze the protocol itself. In particularr if there is an
attack on this abstracted protocoir then the same attafc exists when a real cryptosystem is used.

2 Related Work

Because these protocols tended to be short and not terribly complicatedr informal argumerts were used to
prove their correctness. Howeverr when running in paralleir the befeior of these protocols is more difficult
to analyze. Asynchronous composition is already difficult to reason aboutr and adding issues of who knnvs
what and when makes reasoning about security protocols extremely difficult. One recent approach taken
by Bellare and Rogaway and by Shoup and Rubinris to try to provide a rigorous mathematical proof of
the correctness of a protocol [3r21]. They use properties of pseudo-random functions and mathematical
arguments to prove that an adversary does not have a statistical advantage when trying to discover a key in
a session key distribution protocol.

One of the earliest successful attempts at formally reasoning about security protocols involved developing
a new logic in which one could express and deduce security properties. The earliest such logic is commonly
referred to as the BAN logic and is due to Burrows!1 Abadir and Needham [6]. Their syntax provided

constructs for expressing intuitive properties like "A said XF' "A beliefs XV "K is a good leyF' and "S is
an authority on X." They also provide a set of proof rules which can then be used to try to deduce security
properties like "A and B believe K is a good key" from a list of explicit assumptions made about the protocol.
This formalism was successful in uncovering implicit assumptions that had been made and weaknesses in
a number of protocols. Howeverr this logic has been criticized for the "protocol idealization" step required
when using this formalism. Protocols in the literature are typically given as a sequence of messages. Use
of the BAN logic requires that the user transform each message in the protocol into formulas about that
messager so thatthe inferences can be made within the logic. For examplerif the server sends a message
containing the key /Cil.rthen that step might need to be converted into a step where the server sends a

message containing A if DF meaning that the ley K,a is a good key for communication between A and D.
An attempt to give this logic a rigorous semantics was made by Abadi and Tuttle [2] and other attempts to
improve or expand the logic can be found in [22]. The BAN logic remains popular because of its simplicity
and high level of abstraction.

Recent work in the use of modal logics for verifying security protocols includes the development of a
logic that can express accountability [13]. Kailar convincingly argues that in applications such as electronic
commercer it is accourtability and not belief that is important. Like their counterparts in the paper worldr
one would like people to be held accountable for their electronic transactions. This means that it is not
enough for the individual participants to believe that a transaction is taking place. They must be able
to prove to a third party that a transaction is taking place. Kailar provides a syntax which allows such
properties to be expressed and a set of proof rules for verifying them. Similar to the BAN logic.rKailar's
accountability logic is at a very high level of abstraction. StihT Kailar is able to use it to analyze four
protocols and to find a lack of accountability in a variant of one of CMU's Internet Billing Server Protocols.

An orthogonal line of research revolves around trying to automate the process of verification when using
these logics. Craigen and Saaltink attempt this by embedding the BAN logic in EVES [7]. The automation
resulting from this experiment was not satisfactory. By building a forward-chaining mechanism and changing
some of the rulesr they Wire able to build a system that would try to develop the entire theory of a set of
axioms (find the closure of a set of formulas under the derivation rules). Kindred and Wing went further by
proposing a theory-checker generator [14]. They provide a formal and well defined framework with assurances
about correctness and termination. In additionr their system generates theory heckers for a variety of logics
including BANr AJTLOGr and Kailar's accomtability logic.

The third technique can be placed in the general category of model checking. The common approach
here is to model the protocol by defining a set of states and a set of transitions that takes into account an
intruderr the messages comnunicated back and forthr and the information knnvn by each of the principals.
This state space can then be traversed to check if some particular state can be reached or if some state
trace can be generated. The first attempt at such a formalism is due to Dolev and Yao [8]. They develop
an algorithm for determining whether or not a protocol is secure in their model. Howeverrtheir model
is extremely limited. They only consider secrecy issuesrand they model only encryptionr decryptionland
addingr heckingr or deleting a principal name.

Meadows used an extension of the Dolev-Yao model in her PROLOG based model checker [17]. In her
systemrthe user models a protocol as a set of rules that describe how an intruder generates knowledge.
These rules model both how the intruder can generate knowledge on its own by applying encryption and
decryptionr and h<w the intruder can generate new knowledge by receiving responses to messages it sends
to the principals participating in the protocol. In additionr the user specifies rewrite rules that, indicate hew
words are reduced. Typicallyr there are three rides used to capture the notion of oqualfy and the fact that
encryption and decryption are inverse functions. These rides are:

encrypt(Xrdecrypt (XrY))-> Y
decrypt(Xroncrypt (XrY))-> Y
id-chcck(XTX)-> yes

To perform the verificationr the user supplies a description of an insecure state. The model checker then
searches backwards in an attempt to find an initial state. This is accomplished naturally in PROLOG by
attempting to unify the current state against the right hand side of a rule and thus deducing from the left

hand side what the state description for tho previous state must, be. If the initial state is foundrthen the
system is inseeurer otherwise an attempt is made to prcyo that the insecure state is unreachable by showing
that any state that leads to this particular state is also unreachable. This kind of search often leads to an
infinite trace where in order for the intruder to learn word Ar it nust learn word Br and in order to learn
word Br it mist, learn word CT and so on. For this reason a facility for formal languages is included which
allows the user to prove that no word in a set of words (or language) can bo generated by the intruder. The
technique involves the following steps:

• Show that the word in question is in the language.

• Show that knowledge of any word in the language requires previous knowledge of another word in the
language.

• Show that the initial state does not contain any word in the language.

This initial model checker was still too limited. In particularr itdid not allow the modeling of freshly
generated nonces or session keys. The model checker evolved into the NRL Protocol Analyzer [18] which
allowed for these operations. In addition the model changed to include the states of the participants as
well as the state of the intruder while still maintaining the old paradigm of unifying against the right hand
sides of transition rules in order to generate predecessor states. Howeverr if arythingr the model has become
more comploxr and it still suffers from the most importari weaknesses of the original system. There is no
systematic way of converting a protocol description into a set of transition rules for the NRL Analyzer. The
model checker also relies heavily on the user during the verification much in the same way a theorem prover
relies on the user to guide it during the search for a proof. Finallyr the algorithms used in the NRL Analyzer
are not guaranteed to terminater and so a limit is placed on the lumber of recursive calls allowed for some
of the model checking routines.

Woo and Lam propose a much more intuitive model for authentication protocols [23]. Their model
resembles sequential programming with each participating principal being modelled independently. There
is an easy and obvious translation from the common description of a protocol as a set of messages to their
model. Their models are also more intuitive because they consider all possible execution traces instead of
considering just the set of words obtainable by the intruder. They are concerned with checking for what they
call secrecy and em correspondence properties. The secrecy property is expressed as a set of words (usually
keys) that the intruder is not allowed to obtain. The correspondence properties can express things of the
form if principal A finishes a protocol run with principal Br then principal B nust have started (participated
in) the protocol run with A. Howeverrthey do not provide a general logic in which to formalize security
propertiesr nor do they pnyido an automated tool. Instead they present a set of inference rules with which
you can prove correspondence assertions about a model [24]. In additionrthe description of their modeir
while intuitiver is not, Try precise or formal.

Bolignano presents a model that, is almost a middle point between these last, two [4]. Like Moadowsl1

Bolignano emphasizes the algebraic properties of the intruder when trying to derive words. The state of
the intruder then is the set of words it, can generaterwhile the state of the participants is determined by
the values of the variables that, correspond to the protocol and their program counters. A number of rules
to reason about what, information is contained in what, messages are provided which can then be used to
prove properties about, a protocol. In the example givenl" all propertiesr including authddcationr are grai
in terms of an invariant, that must, be proven. Because the invariant, must, bo proven to hold for all protocol
stepsr this can become unvieldy very quickly.

Other recent, work in this area has involved trying to use generic verification tools to verify security
protocols. In [lG]r Lowe uses the FDR model checker for CSP [12] to analyze the Ncodham-Schroodor
Public-Key Authentication Protocol [19], Lowe succeeded in finding a previously unpublished error in the
protocol. The fact that, he was able to use a generic model checker is promising as well. Unfortunatelyr
the CSP model for the protocol is far from straightforward. In additionl1 the model is parameterized h/ the
nonces used by the participants. This means that, it, only models a single run of the protocol. In order to
prove the general protocol correct he must prove a theorem that, states that the general protocol is insecure
onlv if this restricted version is insecure.

Loduc and others recently used the LOTOS language [5] and the Eucalyptus tool-box [9] to analyze the
Equicrypt protocol [15]. What makes this an interesting case study is the fact that the Equierypt protocol
is a real system currently under design for use in controlling access to multimedia services broadcast on a
public channel. They were able to find a couple of security flaws in this proposed system using these generic
tools.

Gray and McLean propose encoding the entire protocol in terms of temporal logic [10]. Much like symbolic
model checkingr they describe the model b/ giving formulas that express the possible relationships between
variable values in the current state and variable values in the next state. This makes their framework more
formal than the othersrbut much more cumbersome as well. They provide a simple example and prove
a global invariant for this example. The few subcases they consider are very straightforward but their
technique demands very long proofs even for the extremely simple example they present. They argue that
their technique could be automated but provide no tool for their system.

Abadi and Gordon propose the spi calculusr an extension of the pi calculus with cryptographic primitiver
as another model for describing and analyzing cryptographic protocols [1]. The spi calculus models commu-
nicating processes in a way that is very similar to CSP and CCS. The spi calculus provides constructs for
output on a channeir input on a feanneir restrictionr compositionr testing for cquaW pairs and projectionsr
encryptionr decryption and for branhing on equality to zero. What sets the spi calculus (and the pi calcu-
lus) apart from other calculi is the dynamic nature of the scope of restriction. The restriction operator can
be thought of as creating a new name to which only processes within the scope of the restriction operator
can refer. Howeverr one of these processes could output this new name outside the scope of the restriction
operator allowing another process to refer to it. In the pi calculusr these new names can be though of as
private channels. In the spi calculusrthe restriction operator is used to model nonces and keys. So farr
protocol models have been verified by comparing to a slightly altered model that is "obviously" corrcctr and
isr thereforer at the same lcnl of abstraction as the protocol model.

A more concrete and complete model is presented by Heintze and Tygar [11]. They view protocols as a
set of agents modeled as non-deterministic finite state machines. The actions of a principal who must follow
the protocol depend on the local state of that principal and so are in some sense restricted. The actions of
adversaries are not restricted by the protocol and hence they are allowed to perform any actions consistent
with their current knowledge. (In other wordsl1 they cannot send messages that they cannot generate from
their current knowledge). Their model also includes a notion of beliefT whih along with the sequence of sends
and receivesr defines the local state of a principal. Security is then split into secret-security and time-security.
A model is secret-secure if all beliefs are universally valid. In particular if any principal ever believes that
a message M is only shared among the principals in ST then it is arrays the case that if A knows M then
A 6 S. A model is time-secure if all beliefs eventually expire. In other wordsHf b is a belief held by a
principal A at event e then there is an event e! such that 6 is not held at any event following e'. The authors
go on to prove that the questions "Is P secret-secure?" and "Is P time-secure?" are undecidable. While this
model does a good job of capturing what one means by "sRcurityT" the model seems too complex to be used
in practice.

3 Intuition

We also propose a model checking scheme for the verification of security protocols and we make use of the
same "perfect encryption" assumptions. We propose a very intuitive model which captures the basic idea
of message generation and communication. Unlike other systemsrwhere the protocol must be encoded in
CSP or in term rewrite rulesrin our modeirprotocol definitions are easily translated into a sequence of
commands like SEKD, REOElVEPand NEWKONOE. In factTit seems clear that this translation could even
be done automatically from the simple notation used to describe protocols in the literature as sequences of
messages that occur during a run of the protocol.

Once we have a sequence of actions for each of the participants we take their asynchronous composition to
get the full model of the protocol. There is one other unspecified participant which we call the intruder. The
intruder models an untrusted communication medium as well as any malicious principals. When messages
are sent they can always be intercepted by the intruder. The intruder is also allowed to send messages while
impersonating a trusted principal. The intruder may even be selected as a participant in a protocol run.

In additionr the irtrudor will bo allowed to compromise temporary seeretsr suh as session keysr whih are
generated during the run of tho protocol and are not meant to be treated as permanent secrets. Care must
be takenr hwovcrr because it is unreasonable to alkw the intruder to compromise temporary session keys
as soon as they are generated. In some sensor the participaits should be allowed to make some use of the
key before it is allowed to be compromised.

A run of the protocol will then consist of some interleaving of actions from tho participants and the
intruder. This particular run or trace can then be analyzed to determine if the security of the protocol was
compromised. In particular we can check if the intruder over learns a secret which is meant to bo permanent
or if some principal A believes it has completed a run with principal DT while principal!? has not participated
in tho run. In generaTa set, of security requirements can be specified in some kind of logic and then the
trace can bo checked to see if any of these requirements are violated. Howovorl"1 to vjify that a protocol is
corroctr all the possible runs mist be chocked.

Wo can think of a trace as an alternating sequence of global states and actions. The global state will
consist of tho local state of each participant together with some global information like the sot of secret
informationr and whih principals have participated in which protocol runs. Since each principal has a unite
number of actions it can take at any point in time (typically just one)rthen the number of possible next
states is finite. If we restrict ourselves to a sufficiently larger but still finite lumber of runsr then tho oriirc
state space will bo finite and we can do dopth-first search of the state space simply checking that no reachable
state violates tho security specification.

4 The Specification

There are two kinds of properties that wo currently are interested in. The first is a kind of secrecy property.
We provide the model checker with a sot of terms which the intruder is not allowed to obtain. During tho
verificationr TO simply check that the intruder does not have possession of any of tho terms in this sot. This
is not as straightforward as it might seem because tho information known to tho intruder is typically infinite.
For oxamplor if the htrudor knows a piece of data and a kojT it can repeatedly encrypt this data to produce
an infinite number of new terms.

The second property is a temporal property that Woo and Lam call correspondence [23]. In particularr
we are interested in cheeking that "if principal A believes it has finished a protocol run with principal DT
then principal D must, have begun a protocol run with principal A" This can be generalized to "if event
X occursr then 0T;nt Y must have occurred in the past." (We will use Woo and Lam's notation X «-» Y
to denote this.) Howoverr there is more to this proper^ than a simple temporal relationship. The relation
between Y events and X events must bo a one-to-one mapping. More formallyl1 tho projection of aiy trace
onto X events and Y events must, be derivable from the following grammar:

S -> SxSy\(.

where the terminal symbols x and y represent the events X and Y. In particularr if principals! believes it,
has completed two protocol runs with principal DT then principal/? must have at least begun two protocol
runs with principal A. Each end of a protocol run on A's part, must bo mapped to a separate beginning of
a protocol run on D's part.

In order to check for this kind of proportyFwo will augment, the global state with counters. For each
correspondence property J^Fwc will maintain a separate counter which will keep track of the difference
between tho number of Y events and X events. If this counter over turns negative (i.e. there are more
X events than Y events) then the correspondence property will bo violated at, that point, (there will be no
one-to-one mapping from X events to Y events). ConversolyFas long as the counter never goes negative
there is always a one-to-one mapping from X events to Y events.

5 Messages

Typicallyr themessagos exchanged during the run of a protocol are built up using pairing and encryption
from smaller submessages. The smallest, such submossagos (i.e. they contain no submossages themselves)

aro called atomic messages. Thorn arc four types of atomic, messages.

• Keys aro lisod to oncrypt mossagos. Wo make the "perfect encryption" assumption? which states
that the only way to obtain the plaintext from an encrypted message is by using the appropriate
decryption key. Keys have the property that every key k has an inverse fc_1 such that for all messages
mr{{m}t}t-i = m. (Note that for symmetric cryptography the decryption key is the same as the
encryption keyr sofc = fc_1.)

• Principal names are used to refer to the participants in a protocol.

• Nonces are randomly generated numbers. The intuition is that since they are randomly goneratedr ary
message containing a nonce can be assumed to have been generated after the nonce was generated. (It
is not an "old" message.)

• Data which plays no role in how the protocol works but which is intended to bo communicated between
principals.

Let A denote the space of atomic messages. The set of all messages M over some set of atomic messages
A is defined inductively as follows:

• If a 6 A then a e M. (Any atomic message is a message.)

• If mi £ M and m2 6 M then mi ■ m2 6 M. (Two messages can be paired together to form a new
message.)

• If m e M and key k 6 A then {m}k e M. (A message M can bo encrypted with key k to form a now
message.)

Because keys have invorscsIVo take this space modulo the equivalence {{m}k}k-i = m. It is also
important to note that wo make the following perfect, encryption assumption. The only way to generate
{m,}k is from m and k. In other wordsrthero do not exist messages m, mi, and m2 and key k such that
{m}k = mi • m2T and{m}t = {m'}k, implies m = m! and k = k'.

Let B C M be a subset of messages. The closure of B (denoted B)F ropreseiting the set of everything
that can be derived from BF is defined h/ the following rules:

1. If meB then me B.

2. If mi e B and m2 e B then mi ■ m2 € B. (pairing)

3. If mi ■ m2 € B then mi e B and m2 e B. (projection)

4. If m 6 B and key k € B then {m}k E B. (encryption)

5. If {m}k e B and key k'1 E B then mE~B, (decryption)

6 The Model

We now define the model formally by describing how the overall global state and the individual principal
local states are defined as well as by describing how actions update the state. The model consists of the
asynchronous composition of a set of namedr comminicating processesr eah augmented with a local store
in which to keep track of the current information it "knows" T and with a set of bindings for the -ariablos
appearing in the process. Each principal involved in the protocol is modelled as one of these processes and
is described by a sequence of actions it is to perform and by the initial state of its local store. The initial
state of the bindings is assumed to bo empty. One prooessr the iitrudorr is not completely specified. Only
the initial state of its local store is given and it is allowed to perform any "realistic" actions. For cxamplcl"
the intruder is not allowed to decrypt messages with a key it does not possess and it is not allowed to send
messages that it cannot create with the information in its local store. But it is allowed to receive and send

messages arbitrarilyr possibly iitcrccpting messages intended for other principals or possibly impersonating
a trusted principal.

More formalhT oah principal is modelled as a 4-tuplo (N,p,I,D)T where:

• N e names is the name of the principal.

• p is a process (similar in style to CSP) given as a sequence of actions to be performed.

• I C M is a set of all messages known (which can be produced) by the principal. M is the set of
all possible messages. Typically I will be infinite and in particularrit is closed under encryptionr
decryptionrpairing (concatenation)rand projection. For examplerif m,k € I then {m}^ 6 I. For
some set of messages JT w. will use J to denote the closure of J under these operations.

• B : vars(p) -> IT whcrcuar.?(p) is the set of variables appearing in the process pT is a set of bindings.

The global state is then maintained as the composition of the participating principalsralong with the
intruder processra list of permanent secretsra list of temporary secretsrand a set of counters indexed
by the pairs of principals participating in protocol runs. More formallyrthe global state is a 5-tuplc
{U,Ci,Cr>Ss>St)T where:

• II is the product of the the individual principals and the intruder process. This product, is asynchronousr
yielding an interleaving semanticsr with the restriction that processes synhronize on messages.

• d : names x names -» N gives the difference between the number of times some principal with name
A has begun initiating a protocol with some other principal with name B and the number of times B
has finished responding to principal A. If a counter ever gets a negative value this means that B has
finished responding in a protocol with A (i.e. believes A has participated in the protocol) without A
having taken part in the protocol.

• C,. : names x names -> N gives the difference between the number of times some principal named
A has begun responding to some other principal named B and the number of times B has finished
initiating a protocol with A. If a counter ever gets a negative value this means that B has finished
initiating a protocol with A (i.e. believes A has participated in the protocol) without A having taken
part in the protocol.

• S„ C M is a set of messages that are are considered safe secrets. These are the set of words that
the intruder is never allowed to know. This set remains constant and usually includes things like the
private keys that principals use to communicate with a server.

• St C M is a set of messages that are are considered temporary secrets. This is the set of new secrets
generated during the run of the protocol. These are secrets which we assume the intruder may be able
to discover by some outside meansr but whih the protocol should not reveair suh as session keys.

The specific actions that a principal may perform can be divided into internal actions and communication
actions. The internal actions are performed asynchronously. Any principal is allowed to perform an internal
action and interleaving is used to model all possible behaviors when multiple principals can make a transition.
We define a transition relation —> between principals such that A -> B if and only if principal A can take
an action and become a principal that behaves like B.

Communication actions consist of send and receive actions. Each receive action can potentially change
the principal's local storer reflecting ar/ new information it has "learned." Communication actions can only
occur in pairs and both principals make a transition simultaneously. These communication actions are also
interleaved with the possible actions of other automata.

In order for a communication action to take placer the message being seit must unify with the message
being received. A message s-msg from principal A = {A,P,1A,DA) unifies with a message r-msg from
principal B = {B,q,lB,BB)T if there exist a substitution^e : vars(q) -> 1A extending BB {BB C CTgjr suh
that BA{s-msg) = (TB(r-msg). If the messages unifyr then the folkwing transitions can be taken:

{A, SEKD{s-msg).p',IA,BA) -> {A,p',IA,BA)

(B, HECEWE(r-ms£/).(f,lB,BB) -> {B,q',IB,aB)

whore I'B = IBli <TB (r-msg). Because wo require that s-msg unify with r-msgT if thnro is already a pair {larT
val) in B for some var appearing in r-m.sjrthon the eorresponding value in s-msg must be val. Thus the
updates to B only add now bindings and never change previous bindings.

For tho most part internal actions are used to create or discover new information. For oxampler
KEWNONCE is used to create a nonce. Nonces are globally distinctr and each NEWKONCE action creates
a nonce that has not, appeared up to that point in the protocol. The now nonce is added to the principal's
local store. NEWSECRET works similarlyF except that this is supposed to model generating a new session ley
which can then be used to encrypt messages. More formally:

(yl,NEWNONCE(ijar)y,/,.ß) -> (A,p',I',B')

(A,KEWSECRET(var).p',I,B) -> {A,p',I',B')

where in both casesr ifval is tho new value generated by the actionT then/' = I U val and B' = B\var <- val\.
If the action was a NEWSECRET actionr then thoSt is updated in the global state as well to S't = St U val.

Additionallyr the iitruder is allowed to perform a GETSEOR.ET action which it can use to acquire a secret
previously generated by a principal using NEWSECRET. This models the possibility of session keys being
compromised. It allows us to have two classes of secretsr those whih we assume to be "permanent" like a
private key between a server and a trusted principair and those secrets whifa are "temporary" such as session
keys. We need to allow the intruder to obtain session keys in order to allow for tho possibility of replay
attacks which would allow the intruder to establish an old compromised key as a session key. Howeverr TO

also need to restrict the the usage of GETSEOR.ET or else the intruder would bo allowed to compromise a
session key immediately after it is generated and before it is ever used. For this reasonr TO only allow the
intruder to perform a GETSECRET action to compromise a key which has already been established or used
in a protocol. Formallyr

(Z,GETSEOR.ET.p',7,i?) -> (Z,p',I',B)

where for some val eJtl/'=/U val and in the global state St is updated to 5| = St-{val}.
Finallyr TO have four special actions BEGINnTENDINITrBEGRESPONDr andEKDRESPOND. These are used

to mark the beginning and the end of a principal's participation in a protocol. We use them to guarantee
that if the principal named A finishes the protocol (performs ENDINIT(B)) then the principal named D has
participated in the protocol (performed BEGRESPOND(A)). Wo do this by maintaining counters for each pair
of principals participating in a protocol. More formallyr

{A,BEGmiT(B).p',IA,BA) -> (A,p',IA,BA)

and wo update the global state by setting the new value of d(A, B):

°^A'B>-\1 otl

Similarlyr

(ß,ENDR.ESPOND(A).})',JB,.BB) -> (B,p',IB,BB)

\Ci{A,B) is donned
otherwise

and wo update tho global state by sotting tho now value of Cj(yl, B):

"■ ' ' ^ error
B)-l HCi(A,B)>Q

otherwise

The definitions for BEGRESPOND and EKDIKIT are identical except that Cr is updated in tho global state
instead of C{.

The GETSECRET action may only bo performed by tho intruderrwhile the rest of tho actions may bo
performed by any principal. The actions a particular honest principal may make are restricted to tho sequence
of actions p that represent its role in tho protocol. The intruder has no such restriction and is allowed to
make any acticm at any timerprovided that if it performs a SEKD action with message mTik must bo tho
case that m E Iz-

Recall that a trace is an alternating sequence of global states and actions and that we are interested in
checking all possible traces. Cloarlyr there are a finite lumber of next states for each of the participants. In
additionr while the iitrudor can generate an infinite number of messagesr it is only allowed to send a finite
number because each SEKD much match with a RECEIVE. Since the there are a finite number of passible
next statosr w only consider a finite number of runsr w. can perform a depth first search of the state space
to generate all possible traces. We then chock that no reachable state violatos the security specification.
Pseudocode for this algorithm can be found in figure 1.

proc DFS (global-state:)
pnsh(glolal-stat.eXS)
while (not empty(S)) do

(■n,Ci,Cr,Ss,St)=Pop(S)
if Ci(x,y) < 0 for some x and y or

C,-(x,y) < 0 for some x and y or
s € Iz for some s 6 S» U St

/* where Iz is the intruder's information in U. */
then report-error
L = next.-st.ates({U,Ci,Cr,SH.St))
for each I e L push(S, I)

Figure 1: Model-chocking algorithm

The remaining detail is how to maintain the local stores for the principals. The local store is accessed in
three places. Firstr if principal(A,j3, IA, BA) sends a message rriT then TO must insure that m € IA. Secondr
if the principal receives message mT then w, must update IA to I'A = IA U m. Finallyr TO check every global
state to see if s e Iz for some s 6 S„ U Sir whoro/^ is tho intruder's local store. It turns that these local
stores are infinite because of the closure operation. HoweverFwo never really need to compute the entire
closure: we need only determine if a particular message is in the closure. So it suffices to represent the
infinite set with a finite set of "generators." This is tho topic of tho next section.

7 Normalized Derivations

Intuitively speakingr ifß represents some set of information thatjs known by a prineipair then tho principal
also knows (can generate) all tho information in B. In general B is an infinite set; howeverF TO usually are
not interested in tho sot of everything that a principal knowsr but instead whether or not a specific message
x € M can be generated by a principal. This leads us to the following definition.

Let leßbti a message. A derivation of x from B is an alternating sequence of sets of messages and
rule instances written as follows:

.ßo^£i^---ß*-i7V.Bfc
where:

. B = Ba

• xeDk

• Each rub instance it; is written as (If,Ni,Oi) where:

- h C ß;

- £»+i = Bi U 0;

- Arj is one of the closure rules for B such that Jj satisfies the premise of the rule and Oj is the
corresponding conclusion.

For exampler lctZ? = {{a}k ■ b, fc-1}. We derive x = a-b as follows:

1. Bn = B = Ua}k-b,k-1}

2. R« = (Ua}k-b},3,{Wh,b})

3. ^^{{aH-ft.fc-1^«,}^?.}

4. R1 = {{{a}k,k-1},ö,{'i})

5. £2 = {{«}* ■ b,k~\{a}k,b,a}

0. Ä2 = ({a,ft},2,{a-6})

7. #3 = {{«}*: • f>,k~x,{a}k,b,a,a- b} which contains x

We would now like to introduce the notion of a normalized de.rivationTbut first we must introduce the
notion of shrinking rules and expanding rules by defining a metric /x : M -> N. Wo then define a shrinking
ride to be a rule such that for every instance of the rule (I, N, 0) we have:

max/x(m) > max/x(m)

Analogouslyr imexpanding rule is a rule for which every instance (/, N, 0) we have:

max/j(m) < min /x(m)
rn.£I m€0

We can now define a normalized derivation as follows:

B^B^-.-B^^B,

is a normalized derivation if and only if for all 0 < i < k,N{ is an expanding rule implies Nj is an expanding
rule for all i < j < k. In other wordsr all shrinking rules appear to the left of all expanding rules. Recall
that in our notationrß; is the rule instance (Ii.Ni, Oi)T

For exampler in our modeir wwill define our metric /x inductively as follows:

• ji(a) = 1 for all a, e A

• /i(m,i ■ m2) = /i(mi) + /x(m2)

• /x({m}t) = /x(m) + 1

Note that /x(m) is well defined when m = {m.i}kl = {m^j^T because the perfect encryption assumption
implies that mi = m2 and k\ = fc2. In the case m = nii • m2 = mi • m2 either mi is a substring of mi or
mi is a substring of mi. Without loss of generalityr assumemi = m[■ b. Then it must bo the case that
m2 = b • m2 because we have m = m,x ■ m2 = m[■ b ■ m2 = m[• "4- Therefore

/x(m) = /x(mi • m2) = /x(mi ■ b ■ m2) = /x(mi • m2).

1Ü

The message derivation rules from section /rcfscct:mcssagcs can now be categorized. With these doflnitionsF
rules 3 and 5 are shrinking rules and rules 2 and 4 are expanding rules.

We now show that in our modeirthere is a derivation of x from B if and only if there is a normalized
derivation of x from B. First we need the following lemma.

Lemma 1: Let Da -4 B\ -4 Bz be a derivation of length 2 such that Na is an expanding rule and N\ is a

shrinking rule. There there exists a derivation B'n -? B[-4 ■ ■ ■ B'k_1 -*
1 B'k such that

1. N[,...,iV£_j are expanding rules.

2. B0 = K
3. B2 QB'k

Proof:

Case JV0 = 2 and JVi = 3:

Let RQ = ({mi,m2},2, {mi -ma}) and Ai = ({m[■m2},3,{m[,7n'2})

Case I: Tn[■ m2 ^ m\ ■ m2 or mj • m'2 6 Bo

In either casoIWj • m'2 € BnT and the new dermtion is

Ro = Ri

Ri = Ra

Case II: m[■ m2 = mi • m2 and m[■ m'2 g Bn

If we also have m'j = m-i and m2 = m2r thenmi, m2 e Bn C Bi. Therefore B2 = -Di and we let the
new derivation consist only of

Ra — Ra

Otherwiserwe must have that either mi is a substring of m[or m[is a substring of m,y. Without
loss of generalityP assumcm-i = m[■ b. Then it must be the case that m2 = b ■ m2 because we have
m = m,i • m2 = mj • b ■ m2 = mj • m2. Then the new derivation becomes:

K = ({mi},3,{m'i,6})
R'i = ({6,m2},2,{m2})

i?2 = ({mi,m2},2,{mi-m2})

And we have that
B'3 = B0U {mi, b} U {m'2} U {mi • m2} = 2?2 U {ft}

Case JV0 = 2 and Ari = 5:

Let iJo = ({mi,m2},2,{mi -m2}) and Äi = ({{m}t,fc_1},ö, {rn})

One of our assumptions about encryption is that given mr the only -my to generate {m}n is by knowing m
and k and using the encryption algorithm. Therefore there are no mi and m2 such that mi • m2 = {m}t.
Sor in this cascl{m}t 6 Ba and the new derivation becomes

Ra = Ri

Ri = An

It is clear that B2 = BL

11

Case N0 = 4 and Ar! = 3:

Lot, Ao = {{m,k},i.{{m}k}) and Ai = ({nil •m2},3,{mi,m2})

Againr sinco TO can't havo m-i -m2 = {m}*r TO must, havo that, mi -m-i 6 Ao and tho now derivation becomes

RQ = Ri

Äj = Ro

AgamTB2 = A2.

Case A0 = 4 and Ni = 5:

Lot, Ra = {{m,k},4,{{m}k}) and Äj = <{{m'}*,1Ar'-1}1ö,{m'})

Cast! I: {m!}k, = {m}k

In this casor TO also havo m' = m and fc' = kT thcroforcßi = A2 and so tho now derivation is:

Ra = Ra

Cloarlyroi = A1=A2.

Caso II: {m'}ji< 5^ {m.}t

It, must, bo tho caso that, {m1}^ e Da so tho following is a valid derivation:

Ra — R\
Rl = Ra

Theorem 2: Let, D C M bo a set, of messages. Then x € B if and only if x has a normalized derivation
from B.

Proof: If x has a normalized derivation from B then clearly this is a derivation and by definition x € B.
For the other directionr lota; e A. Then there exists some derivation

such that x € Bk. Lot, 5 = {i\Ri is a shrinking rule and 3j < i such that, Rj is an expanding rule }. If S is
omptyT then F is a normalized dorration and we are done. Otherwiser TO can induct, on the size of S. Lot,
r = min S. By repetitively using Lemma ir TO can move A,, to the leftF urtil either it, is the leftmost, ruler or
it is immediately to the right of another shrinking rule. Since the original derivation is finite and since each
time we apply Lemma ir ruloii,. moves one slot, to the leftF TO need apply Lemma 1 only a finite number of
times. If A,, becomes the leftmost, ruler then clearly there are no expanding rules to the loft, of A,-. If A,, is
now immediately to the right, of another shrinking rule AST then there are still no expanding rules to the left
of Ar because then there would be an expanding rule to the loft, of AK in tho original derivation and so s e S
and s < r contradicting the minimality of r. Now we have a new derivation of .ijrrTwhich is still finite.
Since the application of Lemma 1 does not add any new shrinking rulosrST the ncwST satisfies^' = S — {?■}.
Furthermore \S'\ = \S\ — IT so H; the inductive hypothesis we can transform V into a normalized derivation
of a;.

Corollary 3: Given x e A^jind B C MT determining ifa; 6 B is docidablo.
Proof: By Theorem 2r.i; e B if and only if x has a normalized derivation from B. Wo therefore try to

find a normalized derivation or show that, none exists. First, wo repeatedly apply shrinking rules to B = Ba

creating new sets B{. Since there are a finite number of rulosr oah rule creates a finite number of now wordsr
each smaller (by the metric /J) than each of tho words used as an input, to the ruler andA0 is finite to beginr
there are only a finite number of A; !s and hence we only apply shrinking rules a finite number of times. Let,
us call this final sot, Bs. Sinco B„ is the result, of repeatedly applying all possible shrinking rules to AFa; has

12

a normalized derivation from B if and only if it has a derivation from B„ which uses only expanding rules.
Furthermorer the length of a minimal derration of x from B„ is bounded by ß(x) since each expanding rule
creates a words that are longer than the words used as inputs to the rule. Since there are a finite number of
expanding rules and Bs is itself finitcr wi can simply try all possible sequences of expanding rules of length
less than or equal to ß(x) in a finite number of steps. Thorcforcrthis whole algorithm is guaranteed to
terminate.

In the proof of Lemma irtho majority of cases displayed a kind of independence of rules. IntuitivolyT
independence means that applying one rule does not increase the set of things that can be derived using
the other rule. More formallyra shrinking rule s is independent of an expanding rule c if for each pair of
instances {IK,s,0K) and (7,.,c,0e) we have one of the following:

1. Oe n I, = 6: The output of the expanding ride cannot be used as input to the shrinking ride. This is
the case for pairing and decryption and for encryption and projection.

2. 0, C Ir: The information gained by applying the shrinking rule was already present when applying
the expanding rule. This could bo the case when for encryption and decryption using the same key.

Note that this property applied to almost all cases of Lemma 1 and that the only real work in proving
Lemma 1 came from the case of the pairing rule and projection rule because these are not independent.
The other pairs of rules were independent because of the "perfect encryption assumption." In generair this
exchanging property (Lemma 1) need only be shown for pairs of rules that are not independent.

8 Information Algorithms

While Corollary 3 proves the decidability of determining if a; 6 BT it is an extremely inefficieit algorithm.
In particularr enimerating all sequences of expanding rules of length /i(x) will yield exponential complexity.
In practice howeverr TO can search for a derivation of x from Bs by using the structure of x. Specificallyr w:
have the following theorems:

Theorem 4: mi ■ m2 € BH jf_and only if mrm2e Bs or mi e SJ and m-2 £ #7-
Proof: Assume mi • m2 £ Bs and mi • m2 £ B»T thenmi -_m2 must be in ~WS because of an expanding

rule. Dy assumptionrmi • m2 $ B„. To show that mt • m2 6 BK can be derived from BH without using a
shrinking rule we take a derivation of mi ■ m2 e BHT TEmd use theorem 2 to get a normalized derivation
T'. Now either the shrinking rules appearing in V are redundant (i.e. they don't add any new words and so
can be removed from the derivation) or we contradict the fact that B„ was created by applying all passible
shrinking rules to B. In either case the remainder of the derivation (and there must be some remainder
since we assume that mi ■ m2 0 B„) must consist of expanding rules. In particular the last rule used in the
derivation must be an expanding ride and the only way that could be the case is if it is rule 2 which would
require as its premise mi e B„ and m2 € B„.

Now assume that mt • m2 e Z?„ or mi e B„ and m2 £ TT,. Then it is clear by either rule 1 or rule 2 that
m,i • m2 e B„.

Theorem 5: {m}k e B„ if and only if {m}k 6 B„ or m 6 TTK and k e ~Bl.
Proof: Analogous to the previous theorem.
Putting all these together yields the basis for our search algorithm. As our set of known messages

increasesrwe repeatedly apply shrinking rules and removing "redundant messages" until we get a set of
"basic" messagesri?,.rto which we cannot apply any shrinking rules. By redundant messagesrwe mean
messages that can be generated from the other messages in the set using expanding rides. For oxamplor
when we apply rule 3 to get mi and m2 from mi • m2IVo also remove ma • m2 from B„. Howeverr when
applying rule 5 we must be careful; when we generate m from {m}k and fc_1 we cannot remove {m}t from
B„ unless k e B„. Pseudocode for this algorithm is given in figure 2.

We now consider the complexity of inserting a new message m into our current set of information B„
and generate a new set of information B'H. The only time there is any interaction between previously known
messages in Bh and m is when we try to apply the decryption rule. The message m can have at most
\m\ encryptions. For each oncryptionrwo scan Bs looking for the inverse key for a total of |U»||m| time.
AnalogoiislyTm could contain at most \m\ keys. For each keyr w; must check each element of B„ to see if it

13

1 function add(7,m)

2 for nach i e 7
3 if % = {x}y and j/_1 = m
4 then 7 = add(7, x)
5 iiy € I then I = I — i
6 \im~x-y
7 thnn rnturn add(add(7,3;)I?/)
8 if m = {a;}w and y~l 6 7
9 then if y 6 7
0 thnn rnturn add(7,a;)
1 nlso return add (7 U m, a)
2 rnturn /Urn

Figure 2: Augmenting the intruder's knowlndgn

can now bo decrypted. Againr this tabs at most |7Js||m| time. HowovoriT the newly decrypted message could
again be decrypted. The number of iterations is bounded by \BK\: thereforer the total time to generateTJ^.r
is bounded by 0(|7?„|'2|m|) and the_siüo of B's is bounded by 0{\D„\2).

We know that any words in BK can be derived using only expanding rules. When we search to see if
a word in is knownr w: can use theorems 4 and 5 to break it down into smaller pieces which can then be
searched recursively. For nxampMT if«; 0 D„ and w = {m}jtrthnn theorem 5 tells us that w E Ds only if
m € D„ and k 6 B„. Pseudocode for this algorithm is given in figure 3.

1 function in(7,m)

2 if m e 7
3 then return true
4 if m = x ■ y
5 then return in(7, x) and in(7, y)
6 if m = {x}y

7 then return in(7, x) and in(7,)/)
8 retiirn false

Figure 3: Searching the intruder's knowledge

When searching for a derivation of w from B„ we first check to see if v) 6 Bs. This costs at most B„
time. If notr w break down w into two smaller pieces and recursively check those peices. The total number
of recursive calls is bounded by the number of operations making up wTwhich is in turn bounded by |i/;|.
Tims the total time to check if w € B„ is bounded by 0(|2?„||ti;|).

9 Verification Example

We now consider an example to illustrate how the model checker works. We consider the simplified Needham-
Schroeder protocol analyzed by Lowe [10] given below:

I. A^B: A.B.{Na.A}KD

14

2. B -> A : B.A.{Na.Nt}KA

3. A -» # : A£.{JV,,}*rD

Hero A is tho initiator and ß is the rospondor. A selects a nonce N,h and sends it along with its name
encrypted with B's public key to D. B uses its private key to decrypt this message and obtain Na. Now
D generates its own nonce N], and sends it along with JV„ encrypted with A's public key to A. A uses its
private key to decrypt this message and returns jVj, to B encrypted with B's public key. B then uses its
private key to verify that it has just received the nonce sent earlier.

In order to use our model cheekerr ve first isolate which actions are performed by A and which actions
are performed by B. We then write a short sequence of actions which make up each participant's role in
the protocol. The process description for principal A can be found in figure 4. The description for principal
B is similar. All that remains is to specify the initial state of each principal's local store. Each principair
including the intruderrknows the names of all three principals. Each principal also knows the public key
of each of the three principals. Finallyr oah principal knows it's own private key. Figure 5 lists the initial
contents of the intruder's local store which consists of the names of the three principalsr all three public leys
and it's own private key.

((beginit (*p-var* b))
(newnonce (*var* na))
(send (*var* b)

(concat a
(*var* b)
(encrypt (pubkey (*var* b)) (concat (»var* na) a))))

(receive (*var* b)
(concat (*var* b)

a
(encrypt (pubkey a) (concat (*var* na) (*var* nb)))))

(send (»var* b)
(concat a

(*var* b)
(encrypt (pubkey (*var* b)) (*var* nb))))

(endinit (*var* b)))

Figure 4: Process description for the initiator

(a b »intruder* (pubkey a) (pubkey b)
(pubkey »intruder*) (privkey »intruder»))

Figure 5: The intruder's initial knowledge

The result of the verification attempt can be found in figure G. In just a few secondsr the model heckor
finds a violation of the security specification and generates a counter-example. Figure 7 provides an easier to
read description of the attack. The sequence of messages for two runs of the protocol (a. and ß) are provided.
The notation 1(A) is meant to convey either / impersonating A if on the left of the arrowr or/ intercepting
a message meant for A if on the right of the arrow.

If we examine the counter-example we can see what has happened. A initiates a protocol run with the
intruder. The intruder initiates a protocol run with B impersonating A and using the same nonce that A
used with the intruder. When B respondsF the irtruder forwards this message to A. This message has the
format that A is expectingr namely its (wn nonce and a new nonce encrypted with A's public key. A then
replies back to the intruder with B's nonce encrypted with the intruder's public key. The intruder can use

15

its private key to decrypt this and it can now return D's nonce encrypted with D's public key. When B
receives this messager the protocol run is complete andß believes it has finished a protocol rim with A while
A does not have the corresponding belief that it has initiated a protocol run with D.

The above analysis is mast easily seen in figure 7 by observing the following relationship between the a
run and the ß run:

• The role of A in a is played by / in ß.

• The role of I in a is played by D in ß.

• Each message in ß can be obtained from the corresponding message in a. by replacing every occurance
of / with D.

Thcrcforcr the/3 run is identical to the a run except that D plays the role of the responder and I impersonating
A has played the role of the initiator.

"Lack of correspondence"
(B (BEGRESPOND A))
(A (BEGINIT »INTRUDER*))
(A ((NEWNQNCE (*VAR* NA)) (*NQNCE* 245)))
(A
(CONCAT A »INTRUDER*
(ENCRYPT (PUBKEY »INTRUDER*) (CONCAT (»NONCE* 245) A)))

INTRUDER)
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (CONCAT (*N0NCE* 245) A))) B)
(B ((NEWNQNCE (»VAR* NB)) (*N0NCE* 260)))
(B
(CONCAT B A (ENCRYPT (PUBKEY A) (CONCAT (*N0NCE* 245) (*N0NCE* 260))))
INTRUDER)
(INTRUDER
(CONCAT »INTRUDER* A
(ENCRYPT (PUBKEY A) (CONCAT (*N0NCE* 245) (*N0NCE* 260))))

A)
(A (CONCAT A »INTRUDER* (ENCRYPT (PUBKEY »INTRUDER») (»NONCE* 260)))
INTRUDER)

(A (ENDINIT »INTRUDER*))
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (»NONCE* 260))) B)

Figure G: Verification Result

«1. A -> / A.I.{Na.A}Kl
01. 1(A) -> B A.B.{Na.A)KD

02. B -> 1(A) B.A.{Na.Nh}KA

a-2. I -> A I.A.{N,I.N,,}KA

a.Z. A -> I A.I.{N,,}KT

ßZ. 1(A) -> B A.B.{Nh}KB

Figure 7: Attack on Needham-Schroeder Protocol

Lowe suggests fixing the protocol by changing the second message so that the new protocol is as follows:

1. A -» B : A.B.{N,h.A}Kn

10

2. D -> A : £.A{iV„.JV,,..D}KA

3. A -> £ : A.D.{Nh}Kn

Whnn wo try to verify this protocoir lilc Lower TO find no attack in a single: run of thn protocol. Because
no attack was foundrtho entire exhaustive search of the state space is performed and so the verification
process takes a bit longerr but it still completed in under a mimte.

10 Conclusion

Our model checker provides a number of advantages over other formalisms. The way we model a protocol
is very intuitive. We simply list the sequence of actions that each participant takes in the protocol. Unlike
systems based on logicsr ve need not interpret the beliefs that each message is meant to conveyr and VK can
generate counterexamples when an error is found. Unlike term rewriting approachesr TO need not construct
a set of rewrite rules to model how an intruder can manipulate participants to generate new messages. We
simply model the protocol as a set of programs!1 one for eah participant in the protocol. Because we separate
the algorithms that maintain the intruder's knowledge from the state exploration algorithmsr TO also never
need to encode the intruder for our models.

The prototype model checker described here has successfully discovered previously published errors in
protocols. When run on correct protocoM1 the model hecker takes a bit longer because it ends up exploring
the entire reachable state spacer but for the examples investigated so farlHho system still terminates in
about a minute. We are confident that this kind of exhaustive simulation is a feasible and useful technique
for verifying security protocols. Howeverrthere are still many extensions that can be investigated and
implemented as well as additional experiments to be carried out.

Despite that fact that there is a simple and straightforward translation from protocol descriptions in the
literature into our modelling languager this process is tedious and prone to error.We are currently developing
a better interface that would allow protocols to be specified exactly the same way they are specified in the
literature. We are also working on defining a logic in which to specify the properties we are interested in
checking. We are investigating how to add other message operations such as XOR and encryption with
non-atomic keys. While these extensions should be possibler it is not clear hew these additions will affect
the efficiency of our decision procedure for message derivations.

Efficiency is also an important concern. Currentlyr the model hecker runs in an acceptable amount of
time. As we begin to increase the number of concurrent protocol runsr and as TO increase the complexity of
the model checker itselfT ve can expect the execution time to increase dramatically. Techniques that increase
the efficiency of the model checker are necessary to combat this increase in complexity. In particularr it has
become clear that a number of operations can be thought of as independent of each othcrr in the sense that
they can be swapped in the execution trace without affecting the rest of the trace. This leads us to believe
that partial order techniques [20] can be applied. The increase in efficiencyr ease of useP and expressibiljt
will prove useful in analyzing more complex protocolsr including electronic commerce protocols.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols the spi calculus. In Proceedings of the
Fourth ACM Conference on Computer and Communications SecurityT April 1997. To appear.

[2] M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Proceedings of the 10th ACM
Symposium on Principles of Distributed ComputingY pages 201-216r August 1991.

[3] M. Bellare and P. Rogaway. Provably secure session key distribution-the three party case. In Proceedings
of the %%h Annual ACM Symposium on Theory of ComputingY pages 57-GGr 1995.

[4] D. Bolignano. An approach to the formal verification of cryptographic protocols. In Proceedings of the
3rd ACM Conference on Computer and Communication SecurityT 199G.

17

[5] T. Dolognosi and E. Brinksma. Introduction to the iso specification language LOTOS. Computer
Networks and ISDN SystemsT 14(l):25-59r 1987.

[G] M. Burrowsr M. Abadir and R. Needham. A logic of authddcation. Technical Report, 39r DEC Systems
Research Centorr Ebruary 1989.

[7] D. Craigen and M. Saaltink. Using EVES to analyze authentication protocols. Technical Report TR-
96-5508-05r ORA Canadar 199C.

[8] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
TheoryT 29(2):198-208r Main 1989.

[9] H. Garavel. An overview of the Eucalyptus toolbox. In COSTS47 workshopT .Line 199G.

10] J. W. Gray and J. McLean. Using temporal logic to specify and verify cryptographic protocols (progress
report). In Proceedings of the 8th IEEE Computer Security WorkshopT 1995.

11] N. Hcintzc and J. Tygar. A model for secure protocols and their compositions. IEEE Transactions on
Software Engineering^ 22(l):lG-30r Janary 199G.

12] C. A. R. Hoare. Communicating Sequential Processes. Prentice HahT 1985.

13] R. Kailar. Accountability in electronic commerce protocols. IEEE Transactions on Software Enginecr-
ingV 22(5)rMal99G.

14] D. Kindred and J. M. Wing. FastF automatic hocking of security protocols. In USENIX 2nd Workshop
on Electronic CommerceT 199G.

15] S. Lacroixrj.-M. BoucqucaurJ.-J. Quistatcrl1 and B. Macq. Providing equitable conditional access
by use of trusted third parties. In European Conference on Multimedia Applications, Sendees, and
Techniques - ECMAST96T pages 763-782r Ma 1996.

IG] G. Lowe. Breaking and fixing the Needham-Schrocder public-key protocol using FDR. In Tools and
Algorithms for the Construction and Analysis of SystemsT v>lumc 1055 of Lecture Notes in Computer
ScienceT pages 147-1GG. Springer-Yrlagr 199G.

17] C. Meadows. Applying formal methods to the analysis of a key management protocol. Journal of
Computer SecurityT l:5-53r 1992.

18] C. Meadows. The NRL protocol analyzer: An overview. In Proceedings of the Second International
Conference on the Practical Applications of PrologT 1994.

19] R. Needham and M. Schrocdor. Using encryption for authentication in large networks of computers.
Communications of the ACMT 21(12):993-999r 1978.

20] D. Peled. All from oner one for alir on model-hncking using representatives. In Proceedings of the Fifth
International Conference on Computer Aided yen/iai/ionrLccturo Notes in Computer ScienceFpages
409-423. Springer-Verlagr 1993.

21] V. Shoup and A. Rubin. Session key distribution using smart cards. In Proceedings of EurocryptT 199G.

22] P. Syverson and P. van Oorschot. On unifying some cryptographic protocol logics. In Proceedings of
the 1994 IEEE Computer Society Symposium on Research in Security and Privacy. IEEE Computer
Society Pressr My 1994.

23] T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In Proceedings of the
IEEE Symposium on Research in Security and PrivacyT 1993.

24] T. Y. C. Woo and S. S. Lam. Verifying authentication protocols: Methodology and example. In
Proceedings of the International Conference on Network ProtocolsT 1993.

18

